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Introduction01

• The universe is/was, on the largest scales, nearly perfectly isotropic and
homogeneous.

• However, when we look at the
night sky we see a huge
diversity of structures: stars,
galaxies, and clusters of
galaxies and beyond.



Introduction02

• The theory of cosmological perturbations is what allows us to connect
theories of the very early Universe with the data on the large-scale
structure of the Universe at late times and is thus of central importance
in modern cosmology.

• Cosmological Perturbations:

❑ Newtonian perturbation theory;
❑ General relativity perturbations theory;



Newtonian perturbation theory03

• We model the universe as a fluid where the fluid`s evolution is governed
by the standard fluid dynamics equations:

Euler equation

poison equation

continuity equation



Newtonian perturbation theory04

• The Newtonian perturbation approach allows us to study what these
equations imply for the evolution of small perturbations around a
homogeneous background:

• For an expanding fluid:
proper coordinates “comoving” coordinates



General relativity perturbations theory-introduction05

• The basic idea is to consider a small perturbation to the background metric,
giving:

flat FRLW metric

• The full metric may be written in conformal time as:

• There are, then, at first sight, 10 fluctuations degrees of freedom in (not 16
because of the symmetry)



06

• We may decompose the perturbations in scalar, vectors and tensor members
(SVT decomposition):

where vector quantities are divergence free and tensor quantities are transverse
and traceless.

General relativity perturbations theory-introduction
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• The total number of degrees of freedom may be decreased by simply discarding the
contributions of the vector and tensor perturbation members. This can be done
because:

❑ the most important fluctuations, at least in inflationary cosmology, are the scalar
metric fluctuations;

❑ in linear theory there is no coupling between the different fluctuation modes, and
hence they evolve independently;

• The scalar fluctuations are the fluctuations which couple to matter inhomogeneities
and which are the relativistic generalization of the Newtonian perturbations.

• The perturbed metric can now be written as:

General relativity perturbations theory-introduction



08 General relativity perturbations theory - gauge problem

• The metric perturbations aren’t uniquely defined but depend on our choice of
coordinates or the gauge choice. By performing a small-amplitude transformation
(gauge transformation) of the space-time coordinates we can easily introduce
“fictitious” fluctuations.

• We need, then, a more physical way to identify true perturbations.

• How does the coordinate transformations act on our metric?

where

• By using the invariance of the space time interval:



09 General relativity perturbations theory - gauge problem

• We obtain, then:
derivative in conformal time

• As an example:



10 General relativity perturbations theory - gauge problem

• One way to avoid the gauge problem is to define special combinations of metric
perturbations that do not transform under a change of coordinates. Here we mention
the Bardeen variables :

• As an example:



11 General relativity perturbations theory - gauge problem

• We can use the freedom in the gauge functions to set two of the four scalar metric
perturbations to zero.

• One useful choice is the Newtonian gauge :



12 General relativity perturbations theory - Evolution Equations

final goal



13 General relativity perturbations theory - Evolution Equations

• We begin by remembering the definition of the Christopher symbols:

• As an example:



14 General relativity perturbations theory - Evolution Equations

• With an analogous logic we arrive at:



15 General relativity perturbations theory - Evolution Equations

• By knowing the Christopher symbols, we may, now, calculate the Ricci Tensor and Ricci
scalar.

• The Ricci tensor can be defined as:

• As an example:



16 General relativity perturbations theory - Evolution Equations

• With an analogous logic we arrive at:

• The Ricci scalar may also be calculated:



17 General relativity perturbations theory - Evolution Equations

• We are now finally in conditions to calculate the Einstein tensor, defined as:

• We obtained:



18 General relativity perturbations theory - Evolution Equations

• The Stress-Energy tensor in an homogeneous and isotropic universe gives the
background Stress-Energy tensor:

• If we consider small perturbations of the Stress-Energy tensor:

where



19 General relativity perturbations theory - Evolution Equations

• Considering, again, just scalar perturbations:



20 General relativity perturbations theory - Evolution Equations

• Using these results and the perturbed metric we can, after some calculations, obtain:

0



21 General relativity perturbations theory - Evolution Equations

• Before we finally arrive at the Einstein equations we make a small detour to study the
perturbed conservation equations from the relation:



22 General relativity perturbations theory - Evolution Equations

• We are now finally in conditions to study the Einstein Equations:

*for simplicity is common to drop the anisotropic stress as this term usually does not play a significant role

*

Friedman equation



23 General relativity perturbations theory - Evolution Equations

Poison equation

acceleration equation



24 Conclusion

• We derived the evolution equations for all matter and metric perturbations. In principle,
we could now solve these equations. That study allows us to understand how the
universe formed the astronomic structures and how small imperfections in the early
universe have had great importance in its evolution. These results help us understand
the universe, its constituents and its evolution.

QUESTIONS?


